skip to main content


Search for: All records

Creators/Authors contains: "Cetin, Mujdat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY

    Seismic interrogation of the upper mantle from the base of the crust to the top of the mantle transition zone has revealed discontinuities that are variable in space, depth, lateral extent, amplitude and lack a unified explanation for their origin. Improved constraints on the detectability and properties of mantle discontinuities can be obtained with P-to-S receiver function (Ps-RF) where energy scatters from P to S as seismic waves propagate across discontinuities of interest. However, due to the interference of crustal multiples, uppermost mantle discontinuities are more commonly imaged with lower resolution S-to-P receiver function (Sp-RF). In this study, a new method called CRISP-RF (Clean Receiver-function Imaging using SParse Radon Filters) is proposed, which incorporates ideas from compressive sensing and model-based image reconstruction. The central idea involves applying a sparse Radon transform to effectively decompose the Ps-RF into its underlying wavefield contributions, that is direct conversions, multiples, and noise, based on the phase moveout and coherence. A masking filter is then designed and applied to create a multiple-free and denoised Ps-RF. We demonstrate, using synthetic experiment, that our implementation of the Radon transform using a sparsity-promoting regularization outperforms the conventional least-squares methods and can effectively isolate direct Ps conversions. We further apply the CRISP-RF workflow on real data, including single station data on cratons, common-conversion-point stack at continental margins and seismic data from ocean islands. The application of CRISP-RF to global data sets will advance our understanding of the enigmatic origins of the upper mantle discontinuities like the ubiquitous mid-lithospheric discontinuity and the elusive X-discontinuity.

     
    more » « less
  2. null (Ed.)
  3. The growing success of graph signal processing (GSP) approaches relies heavily on prior identification of a graph over which network data admit certain regularity. However, adaptation to increasingly dynamic environments as well as demands for real-time processing of streaming data pose major challenges to this end. In this context, we develop novel algorithms for online network topology inference given streaming observations assumed to be smooth on the sought graph. Unlike existing batch algorithms, our goal is to track the (possibly) time-varying network topology while maintaining the memory and computational costs in check by processing graph signals sequentially-in-time. To recover the graph in an online fashion, we leverage proximal gradient (PG) methods to solve a judicious smoothness-regularized, time-varying optimization problem. Under mild technical conditions, we establish that the online graph learning algorithm converges to within a neighborhood of (i.e., it tracks) the optimal time-varying batch solution. Computer simulations using both synthetic and real financial market data illustrate the effectiveness of the proposed algorithm in adapting to streaming signals to track slowly-varying network connectivity. 
    more » « less